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The effects of the ratio of the Sherwood and Nusselt numbers Sh/Nu, reaction 
order, n, and volume-change coefficient, (I, on the region of instability for catalytic 
exothermic reactions are examined. An appropriate combination of these param- 
eters enlarges the domain of instabilities of steady states. However, for common 
physical systems the mutuai interaction of temperature and concentration cannot 
be responsible for limit cycles observed for a single catalytic particle. 

INTRODUCTION 

In our previous communications (2, 11) 
dealing with transient heat and mass trans- 
fer in a porous catalyst the conditions 
leading to undamped oscillations have been 
examined. However, the value of the Lewis 
number is too high in order to verify this 
phenomenon in reacting systems. The anal- 
ysis has been performed for the following 
conditions: single reaction of first order 
occurring without volume change and more- 
over both Sherwood and Nusselt numbers, 
describing the transport of mass and heat 
at the interface, are infinite. The later as- 
sumption takes into consideration the same 
values of both concentration and t,emper- 
ature in the bulk flow and at the surface 
as well. 

Very recently, Wicke and Bcusch (1) have 
observed undamped oscillations of tempera- 
ture in a single isolated pellet, hanging on 
a thermoelement wire, for the oxidation of 
hydrogen by oxygen on Pt-alumina. The 
amplitude of oscillations in question has 
been approximately 150°C. It is obvious 
from the experimental arrangement, that 
only the pellet may be responsible for this 

*This paper may be considered cs Modcling 
of Chemical Reactors XXIII. 

phenomenon, and, therefore, the t’ransient 
behavior of a chemical reaction being ac- 
companied by heat and mass transfer in a 
porous st)ructure is reanalyzed. Finally, the 
maximum physically permissible param- 
eters have been chosen in order to examine 
in detail the regions of instability. The 
effect of the Nusselt and Sherwood num- 
bers, reaction order, as well as volume 
contraction on the stability region will be 
investigated. 

NOTATION 

n reaction order 
X dimensionless space coordinate 
Xl collocation point 
Y dimensionless concent,ration 

Greek Letters 

P coefficient of temperature rise in 
porous particle 

Pl first root of transcendental Eq. (16) 
Y dimensionless activation energy 
6 modified Thiele parameter, 6 = @yp 
e dimensionless temperature 
PI first root of transcendental Eq. (15) 
0 coefficient of volume change 
T dimensionless time 
4J ThieIe parameter 
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LW Lewis number 
NU Nusselt number 
Sh Sherwood number 

Subscripts 

linearization may be utilized (4). The 
linearization method can be used having 
the solution of a “linearized version” of 
the former nonlinear equation. For non- 
linearities in coefficients and derivatives 

s steady state the collocation method is more convenient. 
0 initial condition After replacing the space derivatives in a 

Superscripts 
given collocation point, we write, e.g., for 
a plate: 

* critical value a+J 
= 2.5 [y(l) - y]; 

TRAYSPORT EQUATIONS ax2 z=z, 

Let us ax);ume a heterogeneous reaction, 
ao2 
iis = 2.5 [l?(l) - B] (6) 

z =m 
9 + nB, ay 

being accompanied by a volume change ii zzTI 
= 1.1150 [y(1) - y]. (7) 

taking place in the porous structure of a 
catalyst. The mass and enthalpy balances, 

The Jacobi polynomials are frequently 

e.g., for the catalyst of the plate shape, 
recommended for diffusional problems (4, 

may be writ,ten (2, 3). 
10) ; therefore, t’he first node z1 = 0.4472. 
For the infinite values of both Nusselt and 

2 Sherwood number Eqs. (6) and (7) may 
be rewritten : 

7 (1) a?4 z 

z2 x=2, 
2.5 (1 - y) ZZ 1 = = -2.5 0, 

. z 5, 
(8) 

(2) fay 
subject to boundary conditions, 

a5 z=z, 
= l.IlSO (1 - y). 

After inserting Eqs. (8) and (9) in the set 
1 3 r=l:y=l-a-, of Eqs. (1) and (2)) a set of ordinary 

differential equations can be obtained: 

e=-laB 
(3) 

Nu a.r’ J,w 62 = 
dr & (1 - Y) 

z=():!!Y2?!f=() i .249gg 
az as ’ (4) - 

(1 + uy)2 (l - y)2 

and initial conditions, (10) 

7 = 0: y = ye(x), e = 00(x). (3 do 
It is obvious t,hat for u = 0, Eq. (1) cor- 

-= 
dr 

Y (11) 

responds to the common mass balance 
presented, for instance, in our former com- subject to initial conditions, 
munication (2). 

The equation describing transient mass 
T = 0: y = yo, e = eo. 

t’ransfer in a porous catalyst is highly non- Eqs. (10) and (11) can be used for a 
linear ; moreover, the nonlinear source study of effects of the coefficient CT on the 
term contains the nonlinearities in co- stability of steady states. 
efficients and derivatives as well. For ,C = 0, we can take use of the 

For a simplification of a set of non- linearization principle (2, 4) and Eqs. (1) 
linear parabolic equations, collocation or and (2) may be written 
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Lw 2 = p?(l - y) - @y” exp hY 
( ) 

j e = $$l - y). (19) 

(i2) 
de 

The effect of volume-change coefficient 
-= 
dr - ~128 + 92rP~* exp ) on stability, for nonsaddle steady states, 

can be studied from Eq. (20) (Sh = Nu + 
(13) co, n= 1): 

2.5(1 + u) _ 2.49984 + a)(1 - Y> + $Zexp 

1m* = (1 + uY)2 
cm 

subject to initial conditions, 

T = 0: y = yo, 8 = eo. (14) 

The coefficients pl and PI are the first 
positive roots of transcendental equations, 

tgp = -P/% (15) 

and 

tg@ = -P/Sh. (16) 

We can advantageously use Eqs. (12) and 
(13) for a study of effects of the reaction 
order and the ratio of Nusselt and Sher- 
wood numbers on the stability of partic- 
ular steady states. 

ASYMPTOTIC STABILITY 

For the sake of investigation of the as- 
ymptotic stability of Eqs. (10) and (11) 
as well as Eqs. (12) and (13)) the first 
Ljapunov method can be used in the same 
manner as we have described in the first 
part of this series (9). 

For instance, for (T = 0, the critical Lewis 
number Lw” can be written: 

where y8 and OR is the concentration and 
temperature, respectively. For the sake of 
brevity, the subscript s is further omitted. 
The steady state values y and 8 may be 
calculated from Eqs. (18) and (19) : 

8?(1 - Y> = 42~/” exp & 
( ) 

f (18) 

where the steady-state values y and 0 may 
be determined from Eqs. (21) and (22): 

2.58 = +2+yn exp 
( > 1’ (21) 

ezyp l--y- 
[ 1 + fJy 

o.4ggg7 ; 
l-y 2 

l+ay’ 
) ] 

(22) 

RESULTS AKD I)ISCUSSI~N 

(A) Agreement Between Model and 
Approximation 

The value of Lw” calculated from the 
two-dimensional model is shifted towards 
higher values of Lw. This observation is 
in agreement with our former computed 
results for first-order reaction and infinite 
Sherwood and Nusselt numbcra (11 J. Re- 
ferring to Figs. 1 and 2, the critical value 
of Lw” is for the two-dimensional model 
Lw”< (6,7), in turn, the approximation 
yields for the critical value of the Lewis 
number Lw” = 5.5. 

(B) Critical Lewis Number 

(a) Effect of the ratio Sh/Nu. In our 
two former papers (5, 12) we have dis- 
cussed the effect of the ratio Sh/Nu on 
the region of multiplicity. As a result, for 
in practice common ratios Sh/Nu, the 
region of multiplicity is shifted towards 
lower values of the parameter T/P, ic., for 
an exothermic reaction which i$ not ac- 
companied by an extreme heat evolution, 
multiple steady states may exist. Accord- 
ing to the estimate of Carberry (6’), the 
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FIG. 1. Time dependence of the temperature 
in the center of the particle. Two-dimensional 
model. Sphere. 

upper bound of the ratio Sh/Nu is ap- 
proximately 104; however, for heteroge- 
neous reactions this ratio may be in the 
region 100-600. 

For a first-order reaction, the critical 
values (Lw”) for the plate and sphere 
geometry are drawn in Figs. 1 and 2 as a 
function of the ratio Sh/Nu. For the values 
Sh/Nu > 1 the critical Lewis number Lw” 
shifts towards lower values ; however, 
multiple solutions always exist as we may 
observe in Fig. 3. For example, for 
Sh/Nu = 10 a saddle point exists in the 
region y c (0.34; 0.77) which is always un- 
stable and, therefore, in this region the 
dependence Lw” = f(w) is drawn by a 

r’ n Lv- 7 

0.2 

r 
FIG. 2. Time dependence of the concentration 

in the center of the particle. TFo-dimensional 
model. Sphere. 

dashed line. As long as y < 0.34, multiple 
solutions may not exist. For very high 
Sh/Nu ratios, the region of saddle points 
shifts almost to zero in concentrat,ion, i.e., 
the region of instability disappears again. 
It is obvious that an optimum Sh/Ku 
ratio exists where the critical Lewis num- 
ber is a minimum. Referring to Figs. 4 
and 5, the optimum Sh/Nu ratio z 10 

20, , - 

10 

i 

Sh - f0 
Nu - f 

-15 

FIG. 3. Instability and multiplicity. I3roken 
line indicates occurrence of the saddle points. 
Plate. 
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FIG. 4. Dependence of the critical Lewis num- 
ber on the concentration in the particle. Plate. 
Broken line indicates occurrence of the saddle 
points. 

which results in the minimum Lewis num- 
ber Lw” + 4.9. For both Sh + 00 and 
Nu + CO the minimum value Lw” 2 13.2 
may be estimated. Hence the optimum 
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FIG. 5. Dependence of the critical Lewis num- 
ber on the concentration in the particle. Sphere. 
Broken line indicates the occurrence of the 
saddle points. 

ratio Sh/Nu suppresses essentially the 
critical Lewis number Lw”; however, this 
value is far higher than can be expected 
in realistic physical systems. 

Figures 4 and 5 are drawn for the same 
parameters for a plate and a sphere, re- 
spectively. After comparison of both de- 
pendences we can see a negligible effect 
of the geometry on the critical values of 
the Lewis number. 

(b) Effect of the reaction order. The 
effect of the reaction order is indicated, 
for Sh/Nu = 1, in Fig. 6. The lower the 
reaction order, the smaller is the critical 
Lewis number. Therefore, a high reaction 
order suppresses the occurrence of both 
limit cycles and multiple solutions. As we 
have shown above the ratio Sh/Nu > 1 
shifts the region of instability towards 
lower values of the critical Lewis number 
Lw*. In turn, the higher reaction order 
decreases the domain of multiplicity. 
Hence we can expect a different optimum 
ratio of Sh/Nu. Referring to Fig. 7, the 
optimum ratio Sh/Nu can be extracted to 
be Sh/Nu z 14. However, the minimum 
value of the critical Lewis number Lw” 
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FIG. 6. Dependence of the critical Lewis num- 
ber on the reaction order. Plate. 
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FIG. 7. Dependence of the critical Lewis num- 
ber on the concentration in the particle. Plate. 
Broken lines indicate occurrence of the saddle 
points. 

is slightly higher in comparison to the first 
order reaction. 

( c ) Effect of the volume-change coeffi- 
cient. Recently Weekman (3’) has shown 
that the volume contraction may result in 
an enlargement of the multiplicity region, 
i.e., the critical value (y/3)” can be ex- 
pected to be lower. Now, let us study the 
influence of the volume-change coefficient 
on the stability of particular steady states. 
This dependence is depicted in Fig. 8 for 
parameters y = 40 and ,S = 0.05. For re- 
actions being accompanied by a volume 
contraction the critical Lewis number de- 
creases in comparison to the case without 
volume change ; in turn, for volume ex- 
pansion a higher Lw+ results. For c = 
-0.75, a minimum value Lw’$ z 1.9 may 
be noted. However, this value seems to be 
too high in order to verify it in practice. 
Although the volume contraction may ex- 
hibit an essential effect on the magnitude 
of the (r/3)” as well as Lw3’, the influence 
can be supposed to be small because of 
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FIG. 8. Dependence of the critical Lewis num- 
ber on the concentration in the particle. Effect 
of the volume-change coefficient. Plate. 

excess of one component, e.g., of hydrogen 
in hydrogenation reactions, which is com- 
mon in carrying out exothermic hetero- 
geneous reactions. 

(c) Maximum Transient Tew pela tzcre 
in Catalyst Particle 

A number of authors, e.g., JVei (81, 
Luss (9)) and others (1.3’)) have predicted 
excessive transient hot spots which can be 
substamially higher than the Prater tem- 
perature. Iii all these considerations or 
numerical studies, the magnitude of the 
Ilewis number is very high. In Fig. 9, the 
trajectories are drawn for Lw = 0.1 which 
seems to be the upper bound for t.he over- 
whelming majority of exothermic catalytic 
reactions. This figure indicates that no 
transient hot spots exist and, therefore, 
one can expect that the Prater tempera- 
ture is the upper bound for temperature 
also in transient cases. Horak (7) has ex- 
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FIG. 9. Trajectories in the phase plane 6 -‘y. 
Sphere. 

perimentallp investigated the approach of 
the temperature to the steady state for the 
reaction H2 + 0, on a Pt catalyst. How- 
ever, the transient hot spots have not 
been observed. 

From the material presented, it is ap- 
parent that. the occurrence of unstable 
steady states in a porous catalyst is not 
probable. Therefore, the simple interaction 
“decreasing concentration-increasing tem- 
perature” cannot be responsible for un- 
damped oscillations which have been 
observed for a single particle. The effects 
of transport. parameters on the interface, 
being formulated as a ratio of Sherwood 
and Nusselt numbers, as well as the in- 
fluence of both reaction order and expan- 

sion coefficient on the region of stability 
have been examined. This study has indi- 
cated that an appropriate combination of 
these parameters may lead to an essential 
enlargement of the instability region in 
comparison to the cases discussed in our 
former communications (2, 11). 

We may expect that the observation of 
limit cycles by Wicke and Beusch (1) has 
to be caused by other physical effects. The 
authors of this communication believe that 
t,hese oscillations are results, for instance, 
of autocatalytic kinetics. The analysis of 
such phenomena is now being performed. 
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